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BASIC EQUATIONS IN DIFFERENTIAL FORMS 
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1. Reynolds Transport Theorem 

Consider the flow through a pipe whose cross-sectional area changes in the flow direction. 

Assume that the CV is stationary. 

 

 the outflow from the CV from t to t + td  = II 

 the inflow from t to t + td  = I 

 

 the system at t = CV 

 the system at t td+  = CV – I + II 

 

For the total of any extensive physical property B such as mass, momentum, or energy, the 

Reynolds transport theorem is given by 

 0 0 0 0 i i i i
SYS CV

DB B A V b AV b
Dt t

r r¶
= + -
¶ å å       (1) 
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where 

 B mb=  

in which b represents the amount of B per unit mass. The Reynolds transport theorem states that 

the instantaneous rate of change of B in the system is the rate of accumulation of B in the CV 

plus the net rate out of B from the CV. Thanks to the Reynolds transport theorem, we can 

compute /
SYS

DB Dt  (the time rate of change of B in the system) in terms of /
CV

B t¶ ¶  

(the time rate of change of B in the control volume) and fluxes in and out.  

 

 

Figure 1. Control volume and system for flow through a pipe 

 

2. Continuity Equation: conservation of mass 

The continuity equation can be derived using the Reynolds transport theorem by setting B is the 

mass, i.e., B = M. Since the mass within the system does not change with time, we have 

 0
SYS

DM
Dt

=           (2) 

or 
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   0o o o i i i
CV

M A V AV
t

r r¶
+ - =

¶ å å        (3) 

which can be rewritten as 

i i i o o o
CV

M AV A V
t

r r¶
= -

¶ å å        (4) 

which indicates that the time rate of change of the mass within the CV is the net mass flux in. 

The term on the LHS of Eq.(4) is the time rate of change of the mass within the CV, which is 

given by  

 
CV

M x y z
t t

r d d d¶ ¶
=

¶ ¶
         (5) 

The first term on the RHS of Eq.(4) is the mass flux going into the CV during td . In the 

three-dimensional space (see Figure 2), this is given by 

 u y z v x z w x yr d d r d d r d d+ +        (6) 

The second term on the RHS of Eq.(4) is the mass flux coming out of the CV during td , which 

is  

 
u v wu x y z v y x z w z x y

x y z
r r rr d d d r d d d r d d d

æ ö¶ ¶ ¶æ ö æ ö+ + + + +ç ÷ç ÷ ç ÷¶ ¶ ¶è ø è øè ø
  (7) 

Thus, the net mass flux in is given by 

u v w x y z
x y z
r r r d d d

æ ö¶ ¶ ¶
- + +ç ÷¶ ¶ ¶è ø

       (8) 
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Therefore, we can obtain the equation for the mass conservation or continuity equation by 

equating Eq.(5) and Eq.(8). That is, 

u v w
t x y z
r r r ræ ö¶ ¶ ¶ ¶
= - + +ç ÷¶ ¶ ¶ ¶è ø

        (9) 

If the density is constant (the fluid is incompressible), then 

 0u v w
x y z
¶ ¶ ¶

+ + =
¶ ¶ ¶

         (10) 

Note that this equation is valid whether the velocity is time-dependent or not. 

 

 

Figure 2. A differential element for mass conservation 

 

(Q) Eq.(9) or Eq.(10) is called as the differential form of continuity equation. What is the integral 

form of the continuity equation? 
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3. Streamlines and Stream Function 

The streamline is a curve everywhere parallel to the direction of the flow, whereas the pathline is 

a trajectory of a single particle of fluid. The streakline is a line which is traced out by a neutrally 

buoyant fluid that is continuously injected into a flowfield at a fixed point.     

 

For steady or unsteady flow, a mathematical definition of streamline may be given by 

 
dx dy dz
u v w
= =           (11) 

where dx, dy, and dz are the elements of streamline segment and u, v, and w are corresponding 

velocity components. (Can you derive eq?) 

Tokaty (1971) 

Euler got the most beautiful answer directly or by implication. Let’s imagine a continuous curved 

line l, within a fluid flow, at any given instance of time tangential to velocity vectors of all fluid 

particles through which it passes, the so-called streamline. The word “tangential” implies that 

anywhere along the streamline the velocity vector is parallel to the portion of l where it acts. 

Euler exploited this fact in a somewhat complicated way; but if we apply to it the theorem that 

the vector product of two parallel vectors is zero, we have 

 
i j k

v dl u v w
dx dy dz

´ =

r r r

r
 = 0 

Since the unit vectors are 0i ¹
r

, 0j ¹
r

, and 0k ¹
r

, Eq.(11) can be directly obtained. 
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The concept of streamlines can be related to the continuity equation by using the stream function.  

For two-dimensional incompressible fluid, the continuity equation can be written as 

 0u v
x y
¶ ¶

+ =
¶ ¶

          (12) 

If one introduces a new function defined by the following equations: 

 u
y
y¶

=
¶

          (13) 

 v
x
y¶

= -
¶

          (14) 

where y is a stream function which is a function of space and time. It is apparent that the stream 

function satisfies the continuity equation automatically. Using the total derivative of the stream 

function, 

 d dx dy
x y
y yy ¶ ¶

= +
¶ ¶

 

        = vdx udy- +           (15) 

If dy  is set to zero, the equation of streamline is obtained again. That is, lines of constant y  

represent streamlines. 

 

(Q) Explain the relationship between equation of streamline, Eq.(15), and the stream function. 

 



 
 
 

Basic Equations 

- 7 - 

4. Momentum Equation for Inviscid Fluids 

Let B be the linear momentum P. That is, 

 
SYS

dm= òP V           (16) 

Then, for the linear momentum P, the Reynolds transport theorem becomes 

P V V Vo o o o i i i iCV
SYS

D dV A V AV
Dt t

r r r¶
= + -
¶ å åò      (17) 

where the LHS term is given by 

 
P F

SYS

D
Dt

=           (18) 

which is the result from the Newton’s second law. 

 

Here, we have two options. One is that we apply Eq.(18) to a small fluid element md , and the 

other is that we apply Eq.(17) to an infinitesimal CV, which initially bounds the mass, md . It is 

interesting to note that we have the same result if we apply Eq.(17) to md  (White, 2003). In the 

present chapter, we adopt the former approach. If we apply Eq.(18) to a small fluid element md , 

we have  

 
Dm m
Dt

d d d= =
VF a          (19) 

which is simply the Newton’s second law.  

 

4.1 1D Steady-State Euler Equation 

Consider the 1D flow along the streamtube. Assume that the length of the streamtube (ds) is 
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enough short for the cross sectional area (dA) not to change. If the fluid viscosity is ignored, then 

the pressure force and the body force constitute the external force. Then, in the direction of the 

flow, the external force Fd  is  

 ( ) sin sinF pdA p dp dA g m dpdA g md d q d q= - + - = - -     (20) 

where sin /dz dsq =  and the fluid mass within the streamtube is given by 

  m dA dsd r=           (21) 

Thus, Eq.(20) becomes 

F dpdA gdAdzd r= - -         (22) 

In Eq.(19), the acceleration in the direction of flow is given by 

 s
dV dVa V
dt ds

= +          (23) 

For steady flows, /sa VdV ds= . By equating the LHS and the RHS of Eq.(19), we have    

 ( )   dVdsdA V dp dA gdA dz
ds

= - -r r       (24) 

Divide the above equation by gdAr  results 

 
2

0
2
V dpd dz

g g
æ ö

+ + =ç ÷
è ø

        (25) 

If the density of fluid constant, then 

 
2

0
2

p Vd z
gg

æ ö
+ + =ç ÷

è ø
        (26) 
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ds p + dp

V +dV

p

V

dW

dz

Fluid element along streamline

 

Figure 3. 1D flow along a streamtube 

4.2 3D Euler Equations 

Euler equations can directly be derived from Navier-Stokes equations by ignoring the viscous 

terms. (If inertial terms are ignored, Stokes equations are obtained for flows at a very small 

Reynolds number).  From a viewpoint, the Euler equations are useful for turbulent flows where 

the turbulent viscosities are dominant over fluid viscosity. The viscous terms for the eddy 

viscosity are encountered by averaging the Euler equations over turbulence. 

 

(Q) Assuming that a fluid is incompressible, demonstrate the Euler equation for an inviscid fluid 

such as 

  ( )DV p gz
Dt

r r= -Ñ +  

is also applicable to a viscous fluid if the flow is irrotational. Why is the acceleration term 

conservative? 
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Consider the cubic fluid element below. We will use Newton’s 2nd law to derive the 3D Euler 

equations. The shear stresses are ignored because the fluid is assumed to be inviscid. Similarly, 

the external force includes the body force and pressure force. In the x-direction, if the 

i-component body force per unit mass is denoted by if , then the left hand side of Eq.(19) is 

given by 

 Fx x x
p ppdydz p dx dydz f dxdydz dxdydz f dxdydz
x x

d r r¶ ¶æ ö= - + + = - +ç ÷¶ ¶è ø
  (27) 

and the RHS of Eq.(19) is 

 ( )x
duma dxdydz
dt

d r=         (28) 

where u depends upon space and time. The total change in u between the two locations shown 

below can be written as 

 
u u u udu dt dx dy dz
t x y z
¶ ¶ ¶ ¶

= + + +
¶ ¶ ¶ ¶

       (29) 

where dx udt= , dy vdt= , and dz wdt= . Then, with the help of Eq.(29), the acceleration in 

the x-direction is 

 x
du u u u ua u v w
dt t x y z

¶ ¶ ¶ ¶
= = + + +

¶ ¶ ¶ ¶
       (30) 

The derivative given by Eq.(30) is the change in u as the particle moves with the fluid. This 

derivative following the fluid is called as total derivative or material derivative, sometimes 

expressed by using such an operator as 
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 D u v w
Dt t x y z

¶ ¶ ¶ ¶
= + + +
¶ ¶ ¶ ¶

         (31) 

 

Figure 3. 3D trajectory of a fluid particle 

 

Therefore, in the x-direction, the momentum equation is 

 
1

x
Du p f
Dt xr

¶
= - +

¶
         (32a) 

Similarly, the momentum equations in the y- and z-directions are given, respectively, by 

 
1

y
Dv p f
Dt yr

¶
= - +

¶
         (32b) 

1
z

Dw p f
Dt yr

¶
= - +

¶
         (32c) 

Eqs.(32) were derived for the pipe flow by Euler in 1755, so they are called the Euler equations. 

Since no assumptions were made about density, the equations are valid for both compressible 

and incompressible fluid.  
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Figure 5. External forces on cubic element 

 

As was done herein, the Euler equations can be derived using Newton’s 2nd law, which was 

proposed around 1687. They look the same as Newton’s 2nd law, if you look them closely. 

However, Euler obtained the equations independently with the findings of Isaac Newton. This is 

why we call Euler equation to commemorate his achievement.   

 

The Euler equations constitute a hyperbolic system of partial differential equations (without any 

dissipation or viscous terms). Since the number of unknowns (u, v, w, and p) is the same as the 

number of equations (Euler equations + continuity equation), the equations can be solved 

mathematically without making any further approximations. 
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Lamb (1879) 

To calculate the rate at which any function F(x, y, z, t) varies for a moving particle, we may 

remark that at the time t td+  the particle which was originally in the position (x, y, z) is in the 

position ( , ,x u t y v t z w td d d+ + + ), so the corresponding value of F is  

( ), , , F F F FF x u t y v t z w t t t F u t v t w t t
x y z t

d d d d d d d d¶ ¶ ¶ ¶
+ + + + = + + + +

¶ ¶ ¶ ¶
 

Let D/Dt be a differentiation following the motion of the fluid, the new value of F is expressed 

by /F DF Dt td+ × , whence 

DF F F F Fu v w
Dt t x y z

¶ ¶ ¶ ¶
= + + +
¶ ¶ ¶ ¶

 

5. Hydrostatics 

When the fluid velocity is zero, the vector form of Eqs.(32) becomes  

1 p f
r
Ñ =           (33) 

Consider the gravity force is the only body force, that is,  

0x yf f= =      and   zf g= -     (34) 

where z is taken positively upward from the surface of the ground. Then the integration of 

Eq.(33) in the z-direction yields 

constantp gz= - +r           (35) 

Eq.(35) describes the pressure decreases linearly with increasing height, i.e., hydrostatic pressure 
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distribution. 

6. Bernoulli Equation 

Consider the steady two-dimensional (x-z) flow of an incompressible, inviscid fluid, 

1
x

u u pu w f
x z xr
¶ ¶ ¶

+ = - +
¶ ¶ ¶

        (36) 

1
z

w w pu w f
x z zr
¶ ¶ ¶

+ = - +
¶ ¶ ¶

        (37) 

Using the definition of the streamline, the elements dx and dz are related to the velocity 

components by 

        
dz w
dx u

=           (38) 

Then, with the help of Eq.(38), Eqs.(36) and (37) can be combined into one equation such as  

 
2

0
2

p Vd z
gg

æ ö
+ + =ç ÷

è ø
         (39) 

where 

 2 2 2V u w= +           (40) 

 x zdF f dx f dz= +          (41) 

Eq.(41) denotes the total differential of a force potential, and the force having a potential is said 

to be a conservative force. Integrating Eq.(39) yields 

2

constant
2

V p F+ - =
r         (42) 
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For unsteady flows, we have to add ( )/u t dx¶ ¶  for the x-direction and ( )/w t dz¶ ¶  for the 

z-direction, respectively. But these are components of ( )/V t ds¶ ¶ , where ds is an element of the 

streamline.  Thus 

2

0

0
2

V V pd ds F
t r

é ù¶
+ + - =ê ú¶ë û

ò        (43) 

Notice that the integration of the unsteady term is carried out along a given streamline at a given 

instant of time from an arbitrary reference point. The integration of Eq.(43) yields a non-zero 

constant in the right-hand side of the equation, which is called the Bernoulli constant. The 

constant, which is a function of time, has a certain value for a fixed streamline. Integrating the 

above equation between two points of streamline leads to 

1 22 2
1 1 2 2

1 2
0 02 2

V p V pV Vds F ds F
t tr r

¶ ¶
+ + - = + + -

¶ ¶ò ò  

2 2 2
2 2 1 1

2 1
1 2 2

V p V pV ds F F
t

¶
+ + - = + -

¶ò r r
      (44) 

It should be pointed out that the integral in Eq.(44) is not always easy to evaluate.  
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Problems 

1. The Reynolds transport theorem for the linear momentum P is given by 

CV CS
SYS

D dV b dA
Dt t

r r¶
= + ×
¶ ò ò

P V V n  

where  

 
SYS

dm= òP V   

From Newton’s second law, the LHS term of the Reynolds transport theorem is  

  
SYS

D
Dt

=åP F         (a) 

If one assumes that the CV is fixed with time, then one can write 

 
CS

CV

b dA
t

r¶
= + ×
¶å ò
PF V n        (b) 

which is valid at a time when the system coincides with the CV in a strict sense. Here, we have 

two ways of deriving the differential form of momentum equations. One is to use Eq.(a), by 

applying it to an infinitesimal small element of md . The other is to use Eq.(b), similarly 

applying it to the CV of an infinitesimal small element of md . Show that the two results are the 

same by using a 1D flow along a stream tube.  

 

2. Derive the 1D continuity equation along the stream tube where the cross section varies, i.e., 
A  to A dA+ .  



 
 
 

Basic Equations 

- 17 - 

 

3. The 1D Euler equation along the streamtube (s-axis) can be written as 

 1
s

V V pV f
t s sr

¶ ¶ ¶
+ = - +

¶ ¶ ¶
 

Starting from the above equation, derive the following form of 1D momentum equation for 

steady flows:  
2

0
2

p Vd z
gg

æ ö
+ + =ç ÷

è ø
 

 

4. Derive the total derivative or material derivative such as 

 D u v w
Dt t x y z

¶ ¶ ¶ ¶
= + + +
¶ ¶ ¶ ¶

 

using the Taylor series expansion. 

 

5. Starting from the 3D Euler equations such as 

 
1

x
u u u u pu v w g
t x y z xr
¶ ¶ ¶ ¶ ¶

+ + + = - +
¶ ¶ ¶ ¶ ¶

 

 
1

y
v v v v pu v w g
t x y z yr
¶ ¶ ¶ ¶ ¶
+ + + = - +

¶ ¶ ¶ ¶ ¶
  

 
1

z
w w w w pu v w g
t x y z zr

¶ ¶ ¶ ¶ ¶
+ + + = - +

¶ ¶ ¶ ¶ ¶
 

Perform Reynolds decomposition and show that viscous terms due to turbulence appear in the 

turbulence-averaged equations. 

 


